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Abstract
This paper investigates the application of infinite state

model checking to the formal analysis of requirements spec-
ifications in the SCR (Software Cost Reduction) tabular no-
tation using Action Language Verifier (ALV). After review-
ing the SCR method and tools and the Action Language, ex-
perimental results are presented of formally analyzing two
SCR specifications using ALV. The application of ALV to
verify or falsify (by generating counterexamples) the state
and transition invariants of SCR specifications and to check
Disjointness and Coverage properties is described. ALV is
compared with the verification techniques that have been
integrated into the SCR toolset.

1. Introduction
Formal requirements languages such as RSML (Require-

ments State Machine Language) [17], a Statecharts variant,
and SCR (Software Cost Reduction) [13], a tabular lan-
guage for specifying requirements, have been used to spec-
ify the required behavior of real-world, safety-critical sys-
tems such as air traffic control systems and nuclear power
plants. These formal languages produce precise, unambigu-
ous specifications of the required system behavior that ex-
pose errors before they creep into the implementation. Fur-
ther, these languages have a formal semantics which makes
the use of automated formal analysis techniques possible.
Using such techniques, defects in the requirements specifi-
cations can be detected and corrected early in the develop-
ment process when correcting errors is cheap.

In the last two decades, significant progress has been
made in automated verification techniques for finite state
systems, especially in techniques based on model check-
ing [8]. In hardware design, these techniques have been
successfully transferred from academic research into indus-
trial use. In recent years, model checking has been extended
to analyze infinite state models, and infinite state model
checkers have reached a maturity level comparable to that
of finite state model checkers a decade ago. This paper in-
vestigates the application of an infinite state model checker
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called the Action Language Verifier (ALV) [7, 20] to the
formal analysis of software requirements specified in the
SCR tabular notation. The results of applying infinite state
model checking using ALV to SCR requirements specifica-
tions is compared to the results of analyzing the SCR spec-
ifications with the formal analysis tools and techniques of
the SCR toolset [10]. Both the strengths and weaknesses of
the two approaches are identified, and potential synergies
among these analysis techniques are discussed.

2. SCR Language and Toolset

In an SCR specification [10, 13],monitoredand con-
trolled variablesrepresent the quantities in the system en-
vironment that the system monitors and controls. The re-
quired system behavior is specified as relations the sys-
tem must maintain between the monitored and controlled
variables. To specify these relations concisely, the SCR
language provides two types of auxiliary variables—mode
classes, whose values aremodes, and terms—as well as
conditions and events. Aconditionis a predicate defined on
a system state. A basicevent, denoted@T(c) , indicates that
conditionc changes from false to true. The event@F(c)

is defined by@T(¬c) . If c ’s value in the current state is
denotedc and its value in the next state asc′, then the se-
mantics of@T(c) is defined by¬c ∧ c′ and the semantics
of @F(c) by c ∧ ¬c′. A conditioned event, denoted@T(c)

WHEN d, adds a qualifying conditiond to an event and has
the semantics¬c ∧ c′ ∧ d.

The mode classes, terms and controlled variables are
calleddependent variables. SCR specifications define the
values of dependent variables using three types of tables:
condition, eventandmode transition tables. Each term and
controlled variable is defined by either a condition or an
event table. Typically, a condition table defines the value
of a variable in terms of a mode class and a set of condi-
tions, whereas an event table defines the value of a variable
in terms of a mode class and a set of conditioned events.
A mode transition table associates each source mode and
a conditioned event with a destination mode. If the given
event occurs in the source mode, then in the next state the
system makes a transition to the destination mode.

Table 1 gives the format of a condition table defining the
value of a dependent variabler in terms of a mode class
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Table 1. Format of a Moded Condition Table

Mode M Condition
m1 c1,1 c1,2 . . . c1,p

. . . . . . . . . . . . . . .
mn cn,1 cn,2 . . . cn,p

r v1 v2 . . . vp

Table 2. Format of a Mode Transition Table

Current Mode M Event New ModeM ′

m1 e1,1 m1,1
. . . . . .

e1,k1 m1,k1
. . . . . . . . .
mn en,1 mn,1

. . . . . .
en,kn mn,kn

M and a set of conditionsci,j . The value of variabler de-
scribed by the table can be defined as a formulaFr,

Fr ≡
n∨

i=1

p∨
j=1

(M = mi ∧ ci,j ∧ r = vi,j), (1)

wheren is the number of modes inM , p is the number of
conditions for each mode in the table, and the valuevi,j is a
type-correct value ofr. Note that a condition table defines
the value of a variable with respect to a single state. In
contrast, the value of a mode class or a variable described
by an event table is defined on two consecutive states, i.e.,
on state transitions.

Table 2 shows the format of a mode transition table de-
scribing the transitions of a mode classM . The semantics
of the table can be defined as a formulaFM ,

FM ≡
n∨

i=1

ki∨
j=1

(M = mi ∧ ei,j ∧M ′ = mi,j) ∨

¬(

n∨
i=1

ki∨
j=1

M = mi ∧ ei,j) ∧M ′ = M, (2)

wheremi denotes theith source mode,ei,j the jth condi-
tioned event for theith source mode, andmi,j the associ-
ated destination mode.

The format of a moded event table defining a variabler is
identical to the format in Table 1 with each conditionci,j re-
placed by a conditioned eventei,j andr replaced byr′. The
semantics of a moded event table defining variabler can be
represented by a formula similar to (2), wherej varies from
1 to p, Fr replacesFM , r′ = vi,j replacesM ′ = mi,j , and
r′ = r replacesM ′ = M .

Two relations, NAT and REQ, define the relationship be-
tween the current and next state values of all monitored
and dependent variables. NAT specifies the natural con-
straints on monitored and controlled variables, such as con-
straints imposed by physical laws and the system environ-
ment. REQ uses the SCR tables to specify the required
system behavior as constraints on the dependent variables.
Given a set of dependent variablesD, REQ is defined as the

Table 3. Mode Transition Table for Cruise

Current Mode Event New Mode
CruiseCtl CruiseCtl

Off @T(IgnOn) Inactive
Inactive @F(IgnOn) Off
Inactive @T(Lever=const) WHEN IgnOn Cruise

AND EngRunning AND NOT Brake

. . . . . . . . .

Override @T(Lever=resume) WHEN IgnOn Cruise
AND EngRunning AND NOT Brake OR . . .

conjunction of the semantics described by each table; i.e.,
REQ≡

∧
r∈D Fr. In SCR, the required system behavior is

defined by a state machineΣ = (S, θ, ρ), whereS is the set
of states (each state is a function mapping a state variable
name to a type-correct value),θ is a predicate onS which
defines the set of initial states, andρ ⊆ S × S is the transi-
tion relation which defines the allowable state transitions.

2.1. Two SCR Specifications

The Cruise Control System (CCS).The specification of
CCS describes the required behavior of a cruise control sys-
tem for a BMW. CCS controls the car’s throttle and speed
based on the state of the brake, engine, ignition switch, and
cruise control lever. The SCR specification of CCS [11]
uses a mode classCruiseControl to indicate the different
modes of CCS—Off , Inactive , Cruise , andOverride .
The monitored variables of CCS—IgnOn , Speed , Brake ,
Lever , andEngRunning —indicate the state of the car’s ig-
nition, the speedometer reading, the positions of the brake
and cruise control switch, and the state of the engine. An-
other monitored variable represents time. The controlled
variableThrottle represents the state of the throttle, and
the termDesiredSpd represents the desired speed. Table 3
contains an excerpt from the mode transition table for the
CCS. The requirement that the throttle value depends on
1) the difference between the car speed and some constant
value and 2) whether the CCS has been in a given mode for
more than 500 ms can make analysis of the CCS specifica-
tion difficult.

The Safety Injection System (SIS).The SIS specification
describes the requirements of the control software for a nu-
clear reactor’s cooling system [9]. SIS monitors the water
pressure of the cooling system. When water pressure drops
below a certain constant value, the system starts safety in-
jection (if it is not overridden). The monitored variables of
SIS—Block, Reset, andWaterPres —denote the states
of the block and reset switches and the water pressure read-
ing. The mode classPressure consists of three system
modes:TooLow, Permitted , andHigh . The Boolean term
Overridden indicates whether safety injection is overrid-
den, and the controlled variableSafetyInjection indi-
cates whether safety injection is turned on. Table 4, a con-
dition table, defines the value of the controlled variable



Table 4. Condition Table for Safety Injection

Mode Pressure Condition

High , Permitted True False

TooLow Overridden NOT Overridden

Safety Injection Off On

SafetyInjection . Because water pressure can vary from
0 to 2,000 and because the three modes represent the three
intervals of water pressure values that affect the value of
SafetyInjection , analyzing the SIS specification me-
chanically can be challenging.

2.2. SCR Toolset
The SCR toolset integrates the formal analysis tech-

niques and tools presented below. Each tool may be used
alone, or in combination with other tools in the toolset, to
analyze an SCR specification [10].

Consistency Checking. The SCR consistency checker
checks for syntax and type errors, circular definitions, and
other simple errors, and for violations of Disjointness and
Coverage [13]. The checks other than those for Disjointness
and Coverage are analogous to standard compiler checks.
Checking Disjointness detects nondeterminism in the SCR
tables, whereas checking Coverage exposes missing cases.

Simulator. The SCR simulator symbolically executes an
SCR specification to allow users to validate that the specifi-
cation captures the intended system behavior. The simulator
is also useful for demonstrating and validating property vi-
olations detected by a model checker.

Model Checking with Spin. The SCR toolset includes a
translator from SCR to Promela [3], the language of an ex-
plicit state model checker Spin [14]. (Translators from SCR
also exist for symbolic model checkers, such as SMV.) Us-
ing the translator and Spin, one can check SCR specifica-
tions for bothstate invariants, one-state properties that hold
in every reachable state, andtransition invariants, two-state
properties that hold in every reachable transition.

Property Checking with Salsa.The SCR property checker
Salsa [5] may be used to check SCR specifications for Dis-
jointness and Coverage and for satisfaction of state and tran-
sition invariants. Salsa can check the validity of formulas
on Boolean, enumerated and integer variables restricted to
Presburger arithmetic. It uses BDDs for analyzing formulas
on Boolean and enumerated variables and an automata rep-
resentation for analyzing Presburger arithmetic formulas.

Theorem Proving with TAME. TAME (Timed Au-
tomata Modeling Environment), a specialized interface to
PVS [19], offers templates for specifying automata mod-
els and customized strategies which implement high-level
proof steps for proving automaton properties [1]. Initially
developed for Timed Input/Output Automata, TAME has
been adapted to SCR by an automatic SCR-to-TAME trans-
lator and by adding SCR-specific strategies that prove many

properties automatically and exhibit “problem transitions”
for undischarged proof goals.

Abstraction. In [3, 4, 12], three abstraction techniques are
described which reduce the state space of an SCR require-
ments specification. The first technique calledslicing re-
moves variables irrelevant to the validity of the property un-
der analysis. The second and third techniques performdata
abstractionby replacing variables with large domains (such
as integers) with enumerated variables, where each value of
an enumerated abstract variable represents a range of values
for the corresponding concrete variable.

Invariant Generation. Algorithms for generating state in-
variants from SCR specifications are described in [15, 16].
Such invariants are useful as auxiliary lemmas in proving
properties of SCR specifications with TAME and Salsa.

3. Action Language Verifier

Action Language is a specification language for reactive
software systems. The Action Language Verifier (ALV)
consists of 1) a compiler that converts Action Language
specifications into symbolic representations, and 2) an
infinite-state symbolic model checker which verifies or fal-
sifies (by generating counterexamples) CTL properties of
Action Language specifications [7, 20].

An Action Language specification contains integer,
Boolean and enumerated variables, parameterized integer
constants, and a set of modules and actions which are com-
posed using synchronous and asynchronous composition
operators [6, 7]. Semantically, each Action Language mod-
ule corresponds to a transition systemT = (I, S,R) where
S is the set of states,I ⊆ S is the set of initial states and
R ⊆ S × S is the transition relation. The variable declara-
tions of a module define the module’s state set. Arestrict
expressioncan be used to limit the state space to states satis-
fying the restrict expression. A module’sinitial expression
defines the module’s set of initial states. Eachaction ex-
pressioncorresponds to a single execution step and amod-
ule expressiondefines the transition relation of the module
in terms of its actions and submodules using composition
operators.

ALV is a symbolic CTL model checker and uses the least
and greatest fixpoint characterizations of CTL operators to
compute the truth set of a given CTL property. It itera-
tively computes the fixpoints starting from the innermost
temporal operator in the input CTL formula [18]. Since Ac-
tion Language allows specifications with unbounded inte-
ger variables, fixpoint computations are not guaranteed to
converge. To achieve convergence, ALV uses conservative
approximation techniques. ALV also implements a forward
fixpoint computation starting from the initial states to com-
pute an over-approximation of the reachable state space of
a specification.



Table 5. Desired Properties of CCS
A1 Brake⇒ Throttle = off

A2 Throttle = accel⇒ DesiredSpd > Speed

A3 CruiseControl 6= Off ∧ EngRunning⇒ IgnOn

A4 Throttle 6= off ∧ EngRunning⇒ IgnOn

A5 Speed′ = Speed⇒ Throttle′ 6= accel

A6 ¬EngRunning ∧ EngRunning′ ⇒ Throttle′ = off

A7 CruiseControl = Off⇔ ¬IgnOn
A8 Throttle = accel⇒ (DesiredSpd > Speed ∨

DURLeverEQconst > 500)
A9 DesiredSpd′ 6= DesiredSpd⇒ CruiseControl′ = Cruise

∧ (CruiseControl = Cruise ∨ CruiseControl = Inactive)
A10 DesiredSpd = Speed⇒ (CruiseControl 6= Override ∨

Lever 6= release ∨ Throttle = off)
A11 Speed′ = Speed ∧ DesiredSpd = Speed⇒

DesiredSpd′ = DesiredSpd

ALV uses the Composite Symbolic Library [21] as its
symbolic manipulation engine for Boolean logic and Pres-
burger arithmetic formulas. (Presburger arithmetic consists
of linear arithmetic expressions, Boolean connectives and
universal and existential quantification.) The Composite
Symbolic Library integrates multiple symbolic representa-
tions using an abstract interface and a disjunctive, compos-
ite representation that handles operations on multiple sym-
bolic representations. Originally developed using a poly-
hedral representation for Presburger arithmetic constraints
[21], ALV was later extended by adding an automata rep-
resentation for Presburger constraints [2]. ALV also uses
BDDs to encode Boolean and enumerated variables. Poly-
hedral and automata representations can be combined with
BDDs using ALV’s disjunctive composite representation.

4. SCR Verification with ALV
To perform analysis with ALV, the SCR specifications of

the CCS and the SIS were translated into Action Language.
Both Action Language translations consist of a single mod-
ule. The monitored and controlled variables, mode classes,
and terms in the SCR specification were all declared as vari-
ables in the Action Language specification. The restrict ex-
pressions in the Action Language specifications were used
to restrict the values of variables based on the SCR type dec-
larations. For example, if a variabler is declared as an in-
teger in Action Language, by default its domain is the set of
all integers, an infinite set. Such a variable can be restricted
to a finite domain from 1 to 100 by using the following ex-
pression: restrict: r >= 1 and r <= 100 .

The initial expressions in the Action Language specifi-
cations of CCS and SIS are used to declare the initial values
of state variables. For both specifications, a single module
expression defines the system’s transition relation which is
constructed based on the SCR semantics given in Section 2.

Verification of CCS. The internal representation of the
CCS in ALV consists of 13 Boolean and four integer vari-
ables. (In the representation of the transition relation, the
number of variables is doubled since each variable is rep-
resented with one current state variable and one next state
variable.) Six of the Boolean variables are automatically

Table 6. Verification Results for CCS
Property Time Iterations

A1 0.76 sec 2
A3 0.50 sec 2
A4 0.78 sec 2
A6 0.37 sec 2
A7 0.36 sec 1
A8 0.32 sec 1
A9 0.32 sec 1
A10 0.32 sec 1
A11 0.32 sec 1

generated to represent three enumerated variables in the
specification. Four Boolean variables are used to represent
the desired transition invariants (as explained below).

Table 5 lists the desired invariants of CCS. Since proper-
ties A1–A4, A7, A8, and A10, are defined on a single state,
each is a desired state invariant and can therefore be ex-
pressed using the CTL temporal operator AG. In contrast,
each of the properties A5, A6, A9 and A11 is a transition
invariant since each is defined in terms of both the current
state and the next state. Such properties can be specified
in Action Language by declaring a Boolean variable which
is true if and only if the property is true. For example, to
verify the property A6, an auxiliary Boolean variablebA6

is declared and initialized totrue, and the following con-
straint defining the value of the variablebA6 in the next state
is conjoined with the module expression for CCS:

(¬EngRunning ∧ EngRunning ′ ⇒ Throttle ′ = off ) ⇔ b′A6

Then, property A6 is expressed as AG(bA6), i.e., property
A6 holds if and only ifbA6 is true in every reachable state.

Table 6 lists the time ALV required to verify the nine
true properties in Table 5. ALV was run on a Linux ma-
chine with a 2.8 GHertz Pentium 4 processor and 2 GBytes
of main memory. For each property, the table lists the time
ALV required to verify the property, including the time
needed to construct the transition relation (approximately
0.31 sec.). In verifying each property, ALV required 23.2
MB of memory. Note that the transition relation can be
constructed once, and then all nine properties can be ver-
ified one after another; using this approach, ALV verified
all properties in 1.65 sec. (which is less than the sum of
the times shown in Table 6) using 23.2 MB memory. The
last column shows the number of iterations for each fixpoint
computation. The properties requiring only a single itera-
tion are inductive properties, i.e., the fixpoint converges in
the first iteration. Fixpoints for all properties listed in Ta-
ble 6 converged directly with no approximations.

For all results listed in Table 6, we used ALV with the
disjunctive composite representation, where the symbolic
representation for the integer variables is a polyhedral rep-
resentation, and the symbolic representation for the Boolean
and enumerated variables is in terms of BDDs. The transi-
tion relation of the CCS using this representation consists



Table 7. Desired Properties of SIS
S1 Overridden⇒ Pressure 6= High ∧ Reset = Off

S2 Reset = On ∧ Pressure 6= High⇒
¬Overridden ∧ SafetyInjection = On

S3 Reset = On ∧ Pressure 6= High⇒ ¬Overridden
S4 Reset = On ∧ Pressure = TooLow⇒

SafetyInjection = On

Table 8. Verification Results for SIS
Property Time Memory Iterations

S1 0.03 sec 1.2 MB 1
S3 0.03 sec 1.2 MB 1
S4 12.82 sec 11.9 MB 1102

of 226 disjuncts which contain 5,693 BDD nodes and 326
polyhedra with 3,498 equality or inequality constraints.

Two properties not listed in Table 6 are A2 and A5.
ALV shows that property A5 is false by generating a coun-
terexample. Fixpoint computations for generating the coun-
terexample, which has length seven, required 11 iterations.
Counterexample generation for property A5 using the au-
tomata representation for all the variables required 42.91
sec. and used 2.6 MB of memory. In the automata repre-
sentation, the definition of the transition relation of the CCS
contains 2,004 states. In the automata representation used in
ALV, the transitions of the automata are represented using
BDDs [2]. The transitions of the automaton representing
the CCS transition relation contain 22,744 BDD nodes.

For property A2, the fixpoint computations of ALV did
not converge. When the value of one constant in the speci-
fication was changed from 500 to 5, ALV was able to gen-
erate a counterexample for the property. This failure to con-
verge arose because generating a counterexample for prop-
erty A2 requires the time variable to reach a value that ex-
ceeds the constant. Since the time variable starts at zero and
increases by at most one in each execution step, the coun-
terexample for this property contains hundreds of states.
When a smaller value of the constant is used, a shorter
counterexample can be generated. For the smaller constant
value, fixpoint computations for the counterexample gener-
ation require 14 iterations, and the generated counterexam-
ple has length ten. Counterexample generation for property
A2 using the automata representation for all the variables
required 32.86 sec. and 3.0 MB of memory.

Verification of SIS. ALV uses seven Boolean variables and
one integer variable to represent the states of SIS and 14
Boolean and two integer variables to represent its transition
relation. Table 7 lists the desired properties of the SIS. Be-
cause each property is a desired state invariant, each can be
expressed using the CTL temporal operator AG.

Table 8 lists the time, memory, and number of fixpoint
computations required to verify each true property of the
SIS. The automata representation was used to verify S4 and
the composite representation with polyhedra and BDDs to

verify properties S1 and S3. The SIS transition relation
using the composite representation consists of 21 disjuncts
which contain 282 BDD nodes and 51 polyhedra with 148
equality or inequality constraints. Using the automata rep-
resentation, the same transition system is represented with
an automaton containing 95 states and 393 BDD nodes. Ta-
ble 8 shows that property S4 required 1,102 fixpoint itera-
tions. This means that ALV had to enumerate the complete
state space to verify this property. The fact that ALV is able
to compute 1,102 fixpoint iterations in 12.82 sec. shows that
the size of the symbolic representation does not increase
drastically during the image computations.

ALV generates a counterexample to demonstrate that
property S2 does not hold. The fixpoint computations for
the counterexample generation required 1,104 iterations,
and the counterexample has length 887. Using the automata
representation, ALV generates the counterexample in 25.71
sec. using 72.3 MB of memory.

5. Consistency Checking
In addition to checking for syntax, type, and other simple

errors, the SCR consistency checker also checks the speci-
fication for the Disjointness and Coverage properties [13].

The Disjointness check ensures that each function de-
fined by an SCR table is well-formed; for example, for each
mode and condition, a condition table cannot assign more
than one value to a variable. This check, which corresponds
to checking that for each mode in an SCR table every pair
of conditions for that mode are pairwise disjoint, is based
on the semantics of SCR tables given in Section 2. The Dis-
jointness check for condition tables corresponds to check-
ing the following formula:

∀i, 1 ≤ i ≤ n, ∀j, k, 1 ≤ j, k ≤ p : j 6= k ⇒ ci,j∧ci,k ≡ false, (3)

wheren is the number of modes andp the number of condi-
tions, andci,j andci,k are thejth andkth conditions for the
ith mode. The Disjointness check for event tables is defined
similarly with ci,j andci,k in (3) replaced byei,j andei,k.

The Coverage check analyzes each condition table to en-
sure that the function defined by the table is a total function.
The check is performed by checking that the disjunction of a
set of conditions evaluates totrue. Based on the semantics
of the SCR tables given in Section 2, the Coverage check
for a condition table analyzes the following formula:

∀i, 1 ≤ i ≤ n :

p∨
j=1

ci,j ≡ true. (4)

The SCR consistency checker uses the formulations
in (3) and (4) to check the SCR tables for Disjointness and
Coverage. Because ALV is a CTL model checker, using
ALV to check Disjointness and Coverage requires the re-
formulation of these properties as CTL formulas.

Disjointness Checking with ALV. The CTL formulation of
the Disjointness property states that, for any current system



state, the value of any dependent variabler in the next state
is uniquely determined by the value of the monitored vari-
ables in the next state. Formally, the Disjointness property
holds for any dependent variabler ∈ D if and only if all
system states satisfy the following CTL property:

EX(r = vr ∧
∧
r̂∈R

(r̂ = vr̂)) ⇒ AX(
∧
r̂∈R

(r̂ = vr̂) ⇒ r = vr). (5)

In (5),R is the set of monitored variables, andvr andvr̂ are
type-correct values of variablesr andr̂. The formulation of
Disjointness in (5) has been proven to be equivalent to the
original SCR formulation in (3).

The Disjointness property states that the above CTL
property must hold for every system state, reachable or not.
To achieve this, the initial condition in the Action Language
specification was replaced bytrue (which represents all
states), and the above CTL property was then checked. Us-
ing ALV, the verification of the Disjointness property for all
dependent variables required 8.07 sec. and 6.6 MB for CCS
and 2.07 sec. and 257.8 MB for SIS.

Coverage Checking with ALV. The Coverage property
may be represented in CTL using an auxiliary Boolean vari-
able for each variable defined by a condition table. Given a
variabler and the auxiliary boolean variablebr, the formula
in (1) defining the value ofr is modified as follows:

Fr ≡
n∨

i=1

p∨
j=1

(M ′ = mi ∧ c′i,j ∧ r′ = vi,j ∧ b′r = true)

∨ ¬(

n∨
i=1

p∨
j=1

(M ′ = mi ∧ c′i,j)) ∧ b′r = false (6)

The Coverage property for variabler holds if and only if
b′r is never set to false, i.e., if and only if the CTL property
AX(br) holds for every system state. The property is eval-
uated by replacing the initial condition in the Action Lan-
guage specification withtrue and then checking the CTL
property AX(br). Using ALV, verification of the Coverage
property for all variables described by condition tables re-
quired 0.06 sec. and 4.0 MB for CCS and 0.02 sec. and 1.2
MB for SIS.

6. Comparing ALV with Other Analysis Tools
This section compares the results of verifying SCR spec-

ifications using ALV with the results of verifying the speci-
fications with other analysis tools.

Multiple Symbolic Representations. Unlike most sym-
bolic model checking tools, ALV supports multiple sym-
bolic representations (polyhedra and automata representa-
tions for Presburger arithmetic formulas combined with
BDD representation). The object-oriented design of the
Composite Symbolic Library and ALV (based on an ab-
stract interface for symbolic representations) enables poly-
morphic verification—to improve the efficiency of verifica-
tion users can choose different symbolic representations at

runtime using command line arguments without recompil-
ing the tool. Experience with ALV shows that the relative
efficiency of polyhedral and automata representations can
change for different specifications. For example, verifying
the Disjointness property for CCS required 8.07 sec. and
6.6 MB for the polyhedral representation and 50.78 sec. and
2.7 MB for the automata representation. In verifying the
Disjointness property for SIS, the polyhedral representation
required 2.07 sec. and 257.8 MB, while the automata repre-
sentation required 1.13 sec. and 2.2 MB. For CCS, the ver-
ification time for the automata representation and for SIS,
the memory usage for the polyhedral representation are un-
acceptably high, and hence the availability of an alternative
representation which required fewer resources was useful.

Explicit State vs. Symbolic Model Checking. Spin, an
explicit state model checker [14], has been used to verify
many properties of SCR specifications [3, 4, 12]. Explicit
state model checkers like Spin usually use efficient depth-
first search algorithms to find counterexamples. The first
counterexample that Spin finds causes it to halt its search
and report the counterexample. If Spin exhausts the state
space without finding a counterexample, it reports that the
property is verified. Hence, Spin is more efficient in finding
errors than in verifying correctness.

Symbolic model checkers like ALV work differently
from Spin since they typically compute fixpoints corre-
sponding to the truth set of the negation of the input tempo-
ral property. If the intersection of the truth set of the negated
property and the initial state set is empty, then the property
holds; otherwise, a counterexample is constructed starting
from a state in the intersection. During its fixpoint compu-
tations, ALV computes a characterization ofall counterex-
ample behaviors, not just one counterexample as in explicit
state model checking. Given this difference, Spin is usually
more efficient than ALV for detecting property violations,
since it reports the first counterexample it finds.

If a specification with a large state space has no errors (or
even if it has errors), Spin can run out of memory without
exhausting the state space. One cause of state space explo-
sion is variables with large domains, such as integers. Since
Spin performs a depth-first search starting from the initial
states, the size of thereachablestate space is important.
A specification with integer variables can be easily verified
with Spin if those integer variables have only a few values or
stay constant. In contrast, specifications with integer vari-
ables with no fixed initial value are difficult to verify with
Spin. Such cases are very likely to occur in SCR specifi-
cations since SCR is a requirements specification language,
and often the input variables in requirements specifications
do not have a fixed initial value but a range of values.

For symbolic model checkers such as ALV, the size of
the reachable state space is not usually a problem because
the size of a symbolic representation is not proportional to



the number of states. This is why symbolic representations
such as BDDs succeed. Unlike Spin, ALV can verify spec-
ifications with a very large (even infinite) state space with-
out running out of memory as long as the size of the sym-
bolic representations stays small during the fixpoint com-
putations. Hence, for specifications with a large number
of initial states, e.g., specifications containing some inte-
ger variables with no fixed initial value, ALV is usually
more efficient than Spin. For example, in the SIS specifi-
cation verified with Spin in [3], the initial value of moni-
tored variableWaterPres is restricted to the single value
14. Thus any verification result obtained only holds if the
initial value ofWaterPres is 14—clearly a very restrictive
initial state for SIS. With ALV, the same specification with a
more generalized initial condition was verified—the initial
value ofWaterPres is any value consistent withTooLow,
i.e., 0 ≤ WaterPres < 900. ALV’s performance for this
generalized specification was identical to that reported in
Section 4. Thus, increasing the number of initial states from
one to 900 states did not change ALV’s performance.

Finite vs. Infinite State Model Checking.Another impor-
tant difference between Spin and ALV is that Spin is a finite
state model checker, whereas ALV is an infinite state model
checker. Thus, ALV can verify infinite state specifications
whereas Spin cannot. For example, ALV can verify spec-
ifications in which some integer variables have arbitrarily
large values. To verify such specifications with Spin, one
must either restrict the values of the infinite state variables
to finite domains or use abstraction techniques.

ALV can also verify parameterized specifications. For
example, ALV can verify specifications with unspecified in-
teger constants. When such a specification is verified, the
results hold for all possible values of the parameterized con-
stant. ALV can also verify specifications with a parameter-
ized number of finite state components, i.e., specifications
containing an arbitrary number of instantiations of a finite
state component. Such parameterized systems cannot be
verified using Spin. To verify such systems using a finite
state model checker, one must restrict the unspecified con-
stants to a finite set of values and the parameterized compo-
nents to a finite set of components.

Since infinite state model checking is an undecidable
problem in general, the fixpoint computations used in ALV
are not guaranteed to converge. To avoid running for-
ever without terminating, ALV uses conservative approxi-
mation techniques such as truncated fixpoint computations
and widening, which compute lower or upper approxima-
tions of the exact fixpoint sequence [7, 20]. The approxi-
mations are conservative in the following sense: ALV does
not produce false positives or false negatives but may report
the result of verification to be inconclusive. Thus, if ap-
proximation techniques are used, the output of ALV is one
of the following: 1) the property is verified, 2) the property

is false and a counterexample is constructed, or 3) the anal-
ysis is inconclusive. Clearly, options 1 and 2 are always true
negatives and true positives. The goal of ALV’s approxima-
tion techniques is to minimize the third result as much as
possible (although sometimes this is unavoidable due to the
undecidability of the verification problem).

The SIS specification verified in Section 4 with ALV
is the finite state specification verified with Spin in [3].
In the finite state specification, the monitored variable
WaterPres has a finite domain:0 ≤ WaterPres ≤ 2000.
Thus, any verification result for this specification is only
guaranteed to hold ifWaterPres lies in this range. We
converted SIS to an infinite state specification by declar-
ing thatWaterPres can have any nonnegative value. ALV
verified properties S1 and S3 on this infinite state specifica-
tion in exactly the same time as for the finite case reported
in Section 4. Hence, the sizes of the symbolic represen-
tations used by ALV do not increase for these properties
when the finite domain ofWaterPres is replaced with an
infinite domain. However, for the infinite state specifica-
tion, the counterexample generation for property S2 and the
verification of S4 did not converge. To overcome this, the
approximate fixpoint computations mentioned above were
applied. To construct a counterexample for property S2, the
truncated fixpoint computations were applied, and a coun-
terexample was generated in about the same amount of time
as in the finite case. For property S4, the widening heuristic
was applied. Interestingly, applying the widening heuristic
allowed ALV to verify property S4 much faster than in the
finite case—in 0.77 sec. using 1.8 MB memory vs. 12.82
sec. and 11.9 MB in the finite case. This is because the
widening heuristic causes the fixpoint iterations to converge
(to an upper approximation of the fixpoint) much faster than
the exact fixpoint computation (11 iterations vs. 1,102 it-
erations). Moreover, the approximation computed by the
widening heuristic is strong enough to prove the property.
This demonstrates that approximate fixpoint computations
are not only useful for verifying infinite state systems but
can also improve the efficiency of symbolic verification of
finite state systems.

Next, we consider the constants in the SIS specifica-
tion. In the finite state specification of SIS in [3], the three
modes of thePressure mode class are defined based on
two constants,Low = 900 and Permit = 1000. This
means that any verification of this specification holds only
for these concrete values. We constructed a parameterized
SIS specification in which the constantsLow andPermit

are declared as parameterized constants, where0 ≤ Low

< Permit ; i.e., Low andPermit are declared as constants
with unknown values butLow is assumed to have a nonneg-
ative value less thanPermit . The result of verifying the
parameterized specification holds for any value of the pa-
rameterized constants. ALV verified the properties S1 and



S3 on the parameterized SIS specification using the same
amount of time and memory as reported in Section 4 for
the finite case. In the parameterized case, counterexam-
ple generation for property S2 and verification of S4 did
not converge as in the infinite case (note that the parame-
terized constants have an infinite domain). Using widen-
ing, ALV verified property S4 in 2.07 sec. using 3.8 MB
of memory; the fixpoint computation required 15 iterations.
A counterexample for property S2 was generated using the
truncated fixpoint computations in 3.08 sec. with 2.7 MB
of memory. In the parameterized case, the shortest coun-
terexample has only two states (as opposed to 887 states in
the finite state case); hence, counterexample construction
requires much less time. The long counterexample path in
the finite specification is due to the concrete values assigned
to the constants. When these constants are parameterized,
shorter counterexamples are generated.

Abstraction vs. Symbolic Representation. In [4, 12],
two general abstraction techniques are used to reduce
the state space of SCR requirements specifications. One
technique—slicing—removes variables irrelevant to the va-
lidity of the given property using dependency analysis. An-
other technique—data abstraction—replaces variables with
large domains, such as integers, with enumerated variables,
where each value of an enumerated abstract variable rep-
resents a range of values. The first technique, slicing, can
also help ALV in verifying SCR specifications. Because the
sizes of the symbolic representations used in ALV increase
with the number of variables in the specification, reducing
the number of variables reduces the size of the symbolic
representations, thus improving the performance of ALV.
For example, the SCR dependency analyzer determines that
property A3 in Table 5 only depends on the monitored vari-
ablesIgnOn , EngRunning , Brake andLever , and auto-
matically constructs an abstract SCR specification contain-
ing only these monitored variables and the state variables
that depend on them. ALV verified property A3 after this
reduction in 0.02 sec. using 0.8 MB of memory. Without
this reduction, verifying the property required 0.5 sec. and
23.2 MB.

A second technique, data abstraction, replaces variables
with large domains with abstract enumerated variables. If a
specification contains an unbounded integer variable or an
unspecified, arbitrarily large integer constant, some abstrac-
tion is necessary before a finite state model checker such
as Spin can be applied. As discussed earlier, using ALV,
we were able to verify the SIS specification analyzed in [3]
without restricting the integer variables or unspecified con-
stants to finite domains and without using any abstractions.

Invariant Generation. The techniques for invariant gen-
eration presented in [15, 16] exploit the structure of SCR
tables. These techniques construct invariants defined on

Boolean and enumerated variables from event and mode
transition tables.1 They compute a fixpoint using the func-
tion defined by an SCR table, the definitions of monitored
variables and other variables on which the function de-
pends, the initial state definition, and previously computed
invariants. Although the techniques do not compute the
strongest possible invariants (since they do not perform a
reachability analysis), the invariants generated with these
algorithms have proven highly useful in analyzing the prop-
erties of practical systems.

ALV implements forward fixpoint computations starting
from the initial states to compute the reachable state space
of a specification. The exact characterization of the reach-
able states corresponds to the strongest invariant of the spec-
ification. Usually, this invariant is difficult to compute, and
exact fixpoint computations do not converge. ALV’s con-
servative approximation techniques can be used to compute
approximations to the reachable state space, i.e., an over-
approximation of the strongest invariant. This approxima-
tion is still a system invariant, since every system state is in-
cluded in the over-approximation. Thus, ALV can be used
as an alternative invariant generator for SCR specifications.

The forward fixpoint computation used in ALV is sen-
sitive to the characterization of the initial states, whereas
the invariant generation techniques in [15, 16] work only
on the transition relation and therefore are not sensitive to
the characterization of the initial states. Dependence on the
characterization of the initial states can be both an advan-
tage and a disadvantage. It can be an advantage because
stronger invariants may be produced. It can be a disadvan-
tage if the initial states are arbitrarily restricted to a subset
of all possible initial states (e.g., if the specification is over-
specified), and thus discovery of more general properties
is prevented. This may also adversely affect the approxi-
mation techniques. We observed this in the SIS specifica-
tion where the approximation techniques used in ALV pro-
duce a better result when the input condition is less restric-
tive. For example, when ALV computes the over approxi-
mation of the reachable state space for the SIS specification
it over-approximates the value of theWaterPres variable
in Permitted andHigh modes. This is because the initial
state of the SIS specification has a single initial value for
WaterPres . When a more general initial state is specified,
ALV computes the exact reachable state space for the SIS
specification (i.e., generates the strongest invariant).

Theorem Proving vs. Model Checking. In automation
level and expressiveness, infinite state model checking lies
between finite state model checking and theorem prov-
ing. While the input languages of model checkers are less
expressive than the languages of many theorem provers,

1By definition, condition tables define state invariants, and hence gen-
erating state invariants from condition tables is straightforward.



model checkers are normally more automated than theorem
provers. However, as explained above, fixpoint computa-
tions in an infinite state model checker may not converge,
which is analogous to a first-order theorem prover that ex-
haustively searches for a proof without terminating.

Unlike theorem provers, an infinite state model checker,
such as ALV, has the ability to generate counterexamples.
As explained above, while the verification and refutation
results generated by ALV are never spurious, the result of
ALV’s analysis can be inconclusive. This is analogous to
cases in which a theorem prover cannot prove a property
using automated techniques; to make progress, it requires
user assistance. In ALV, user input is restricted to choosing
among different verification heuristics and modifying de-
fault parameters of these heuristics whereas typically theo-
rem provers support more interactive verification.

7. Utility of ALV in the SCR Toolset

The experimental results described in Sections 4– 6 sug-
gest several ways in which ALV could prove useful in veri-
fying SCR specifications. The next section discusses some
of these and also indicates some types of analysis, e.g., con-
sistency checking, where the utility of ALV is less obvious.

Availability of Different Representations. ALV’s support
for more than a single symbolic representation could prove
quite useful in the SCR toolset. As noted above, if ALV
performs badly for one symbolic representation, the user
can switch to another symbolic representation and achieve
(perhaps) improved performance. However, the ability to
experiment with different representations is less attractive
to software practitioners than to researchers. Practitioners
usually prefer more specialized tools like Salsa which are
designed to perform verification without user intervention
and which do not require the user to select from a set of
alternatives. One solution to this problem is for ALV to au-
tomatically compute two different representations and then
to analyze both in parallel. If one analysis completes before
another, the results of the faster analysis are returned to the
user. A similar approach can be used for choosing among
different types of fixpoint computations. A more powerful
solution, a topic for future research, would rely on heuris-
tics to select the best representation or fixpoint computation
based on the given specification.

Parameterization. The experiments with ALV identified
some shortcomings in the expressiveness of the language
supported by the SCR toolset. One problem is the inability
to specify systems with more than a single initial state. A
limitation of the current toolset implementation, this is not a
limitation of the SCR requirements model [10] nor of Salsa
and TAME. Moreover, this limitation can be overcome by
using an abstract variable to define the initial state as de-
scribed in Section 6. A second problem is that the current

toolset does not support a parameterized number of finite
state components. Integrating ALV into the toolset or ex-
tending the language supported by the toolset to handle pa-
rameterized specifications would significantly enhance the
utility of the SCR language and tools.

Comparing ALV with Salsa and TAME. As with ALV, the
result of verifying a specification with either Salsa or TAME
may be inconclusive. In the case of both Salsa and TAME,
an inconclusive result means that 1) the property is true but
one or more auxiliary lemmas are needed to prove the prop-
erty or 2) the property is false. Applying Salsa or TAME to a
specification is equivalent to performing one inductive step
(i.e., one iteration) in an ALV analysis. By conjoining au-
tomatically generated invariants or other proved invariants
with the SCR specification, both Salsa and TAME can often
automatically verify true properties, such as properties A1,
A3, A4, and A6, cases in which ALV needed more than one
inductive step to complete the verification. Hence, when
auxiliary properties are conjoined with the SCR specifica-
tion, both Salsa and TAME are able to verify properties that
ALV verifies on the original specification only. The advan-
tage of ALV occurs when a property is false; in such cases,
ALV can construct a counterexample, whereas Salsa and
TAME cannot. However, when a proof fails, TAME gen-
erates as unproved subgoals one or moredead ends, each
associated with a set ofproblem transitions. In the case of
a false property, the full set of problem transitions contains
all transitions corresponding to property violations. Thus,
in the case of a false property, TAME, like ALV, can com-
pute a characterization ofall property violations.

Abstraction, Invariants, and Approximation. One
promising approach would be to use both automated ab-
straction and approximation techniques to reduce the size
of the state space. As suggested in Section 6, the SCR ab-
straction techniques could be applied first and then ALV’s
approximation techniques could be used to obtain further
reductions. However, while approximation heuristics can
often be used to verify large, complex specifications, a ma-
jor problem with approximations, such as widening, is that
they sometimes “over-approximate,” i.e., eliminate infor-
mation that is needed to prove the property. Unlike ALV’s
approximation techniques, the abstractions in SCR are con-
structed based on the property to be analyzed, and therefore
provide more precision.

Another promising approach is to combine invariants,
such as those generated by the SCR algorithms, with ap-
proximation techniques. One important feature of SCR’s
automatically generated invariants is that they were de-
signed to be easy for practitioners to understand. Hence,
they are not only useful as auxiliary lemmas in verification,
they are also helpful in user validation of the specifications.
Although the forward fixpoint computation implemented in
ALV can be used to automatically construct invariants (as



mentioned in Section 6), it is unlikely that such invariants
will be understandable by the users.

Using ALV for Consistency Checking. While Section 5
demonstrates the feasibility of analyzing SCR specifica-
tions for Disjointness and Coverage using ALV, the bene-
fits of doing so may be limited. Using ALV for consistency
checking may be beneficial only if the symbolic represen-
tations provided by ALV provide an efficient encoding for
the SCR tables. Disjointness and Coverage properties check
the functions defined by the SCR tables for well-formedness
and totality. Checking the SCR table entries using the for-
mulas in (3) and (4) is both sufficient and much simpler then
using a CTL model checker such as ALV. Moreover, the
SCR Consistency Checker provides useful diagnostic infor-
mation when a check fails—both a user-friendly counterex-
ample illustrating an instance of the erroranda display of
the appropriate table with the erroneous entries highlighted.

8. Conclusions
Our results demonstrate that infinite state model check-

ing techniques are useful in verifying properties of SCR
specifications. They also show that infinite state model
checking may also be used for consistency checking and
invariant generation, but that the current SCR techniques
have the advantage that they produce diagnostic informa-
tion when the consistency checks fail as well as invariants
that are easy for software developers and domain experts
to understand. Although the two specifications analyzed
with ALV demonstrated the potential utility of infinite state
model checking for analyzing practical systems specified in
SCR, they are quite modest in size and complexity. Hence,
in future work, we plan to further evaluate the utility of infi-
nite state model checkers, such as ALV, for evaluating prop-
erties of practical systems specified in SCR. One candidate
is the safety-critical weapons control system in [12].
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